The relationship among position, velocity and acceleration is one of the fundamental applications of calculus. From the point of view of calculus, these quantities are related by differentiation and integration. This tells us that if we know at least one of them, we can calculate the other two. The figure below shows the relationship among these quantities.
The arrows in the figure above show the directions in which we have to either differentiate or integrate in order to obtain the other quantities. A simple example is shown next.
Solution:
Differentiate the position equation to obtain the velocity. Then evaluate at t = 10.
Differentiate the velocity equation to obtain the acceleration. Then evaluate at t = 10.
At t = 10, the velocity and acceleration are 97 and 10, respectively, in their corresponding units.





